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SIGNAL HARMONIC ANALYSIS USING THE HP 21-16 B COMPUTER

F. Palutan
Research and Technology Laboratory for the Study

of Plasma in Space

1. Introduction /1 *

Two procedures are generally used to process data coming
from a physical experiment or from some other source: the first,
deferred in time, consists in storing the data in a suitable
fashion and analyzing them at a second time, making use of rough
systems of calculation, if necessary.

The second procedure, in real time, allows the data to be
processedat the very moment at which they are produced; this method
allows the experimenter to observe the evolution of the phenomenon
directly, and to intervene in the instrumentation at his disposal
in such a manner as to obtain the maximum quantity of information.

The techniques of analysis in real time are used in many fields,
from physical measurements to medical applications [11; the present
work originated as a feasibility study of a system for the analysis
of data coming from an infrared telescope, but the conclusions are
general, and they can be applied to different problems.

The function of the analysis time in many applications is
composed of a deterministic, or signal component, and of a
casual, or toise component.

In these cases, the first problem of the analysis is to
separate the signal from the noise, which can be done with differ-
ent methods,according to the type of signal and the information /2
that is. desired.

The second problem is that of studying the properties of the
signal, such as, for example, flow in the time domain or in
that of frequency. The power spectrum constitutes one of the
most important and most useful instruments of analysis for
obtaining the properties of a signal.

In the case of deterministic signals of known form, although
the flow in the frequency domain does not add information to that
obtainable by an analysis in the time domain, it is useful to
indicate the most important characteristics of the signal; however,if there is no preliminary information available, e.g. because
the signal. is embedded in. the. noise, then spectral analysis is

*Numbers in the margin indicate pagination in the foreign text.
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indispensable for obtaining the most significant parameters. Only
when the frequency of the signal is known a priori can different
spectral analysis techniques be used to separate the signal from
the noise, such as, for example, the use of tuned filters.

In the case of casual signals, such as the noise produced
by an electronic device, the power spectrum is of fundamental
importance, since it constitutes the only investigational means
of analyzing the statistical properties of such phenomena.

In the present work, the principle objective is considered
to be detection of a deterministic signal embedded in noise, by
means of determination of the power spectrum.

The techniques generally used to determine the power spectrum /3
of a time function are represented in Fig. 1 [2, 3, 4].

In the first diagram (Fig. la), use is made of analog instru-
mentation; the integrator output supplies the amplitude of the
spectrum in the frequency interval corresponding to the passband
of the filter. To obtain the spectrum of a signal, it is necessary
that the filter passband flow between two assigned frequency limits
with a flow speed compatible with the integrator time constant;
the spectrum resolution. is the ratio of the frequency interval
swept and the filter passband.

Figure lb shows the diagram for data processing used in the
present work; the analog signal, converted into numerical form,
is acquired from a computer that works out the Fourier transform
and the power spectrum of the sample sequence representing the
signal, according to the algorithms discussed below.

In the last diagram, the power spectrum is calculated as a
Fourier transform of the autocorrelation function, according to
the Wiener-Khinchin theorem.

Variance in the results'is diminished by means of an averaging
operation, carried out by the integrator in the first diagram and
by the computer in the other two.

The choice of one of the three methods depends on the
particular problem that must be resolved; the analog systems
are more economical than the digital ones and are the only ones /4
available in the Bae&:of, high frequencies.

On the other hand, dlffusion of small computers had quite
often made the digital processing of signals advantageous, due
to the accuracy with which the results are calculated [5, 6].
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The choice between the two digital systems of analysis (Fig. lb
and Ic) depends on the problem being examined; for example, in
the case of an infrared measurement, the interferometers commonly
used supply a n output signal that is the autocorrelation of
the input signal, for which the only method of obtaining the
power spectrum is that outlined in Fig. Ic, in which the first
two blocks, which compute the autocorrelation function, are
substituted by an interferometer.

In general, however, the computation scheme of Fig. lb is
used, since it is faster than that of Fig. lc, inasmuch as it is
not necessary to compute the autocorrelation function.

In every case, the use of these computation schemes together
is often possible with the same Fourier analyzer, simply by calling
different programs of calculation.

In the present .study, the performance and characteristics of
a system based on the HP 2116 B computer, which operates according
to the plan in Fig. lb, are analyzed.

2. Signal Harmonic Analysis with Digital Techniques /5

The procedures for calculating the spectrum of a signal by
means of the scheme in Fig. lb will be discussed in detail in
this section. We will examine successively the various processing
steps undergone by the signal, assumed to be ergodic and stationary,
from sampling up to the averaging operation.

2.1. Sampling

Sampling consists in considering the values assumed by the
signal to be continuous in time at determined instants, generally
at constant time intervals (Fig. 2).

The following value is defined as the n-th sample:

(2.1)

where to is the initial instant and At is the sampling interval.

The sampling theorem 171 states that the interval At is
linked to band B of the signal by the relation;

At 
(2.2)
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The value fN which satisfies the relation: /6

f = (2.3)N 2At

is called the "Nyquist frequency."

For a correct sampling, it is necessary that the signal
band B be less than the Nyquist frequency fN; this can be obtained
with a suitable choice of the sampling interval At.

If relation (2.2) is not verified, the phenomenon of aliasing
takes place; this is illustrated qualitatively in Fig. 3a.

The very high frequency sinusoid, sampled at time intervals
At that are too large, is not distinguishable in any way after
sampling from the very low frequency sinusoid. It is shown that
all the lines at frequency fN < f < 2 fN are represented by lines
at frequency 2fN - f; the spectrum is continuous, and it is
inverted specularly around the frequency fN (Fig. 3b). The
inversion process continues also for frequencies higher than 2 fN
around the integral multples of fN-

Once At is fixed, on the basis of the signal band and the
characteristics of the sampling circuit, it is approptiate to filter
the signal with a low-pass filter with cut-off frequency less than
or equal to fN, so as to eliminate possible components of frequency /7
f > fN, which could alter the spectrum flow because of aliasing.

2.2. Quantization

The signal samples, defined by (2.1), can assume all the values
included in the continuous interval in which function x(t) is
defined. The quantization operation consists in assigning the
mean value xk to all the x(t) values included in a certain pre-
determined interval:

k, k+ 2 (2.4)

The amplitude of the quantum Ax depends on the interval X of
definition of xCt), and on the number of bits b .azailable for
representing the function in numerical form. In fact, if a
different value is assigned to every quantization interval, with
b bits, ab2.intervals can be enumerated for which Ax is given by:

XA b (2.5)
2
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Converting the signal into numerical form introduces a
quantization error, given by:

9 = X-R (2.6) /8

In the hypothesis that in the quantization interval (2.4)
function x assumes all values with equal probability, then the
mean square error due to quantization is given by:

2 2d AX (2.7)

2

For a large enough number of bits b, this error has a very
small value as compared to other causes of error introduced in
signal harmonic analysis, chiefly as compared to the noise that is
generally superposed on the input signal. In our case, in which
the conversion takes place with 9 bits, the quantization error will
not be considered, since it is negligible in comparison with the
other errors discussed below.

2.3. Discrete Fourier Transform and Power Spectrum

For a continuous signal, the Fourier transform is expressed
by the integral:

X) f(2.8)

which, in the case of signals limited in time in the interval (O,T), /9
becomes:

X(f,T) X(t) -j2uf' (2"
(2.9)



When the signal is sampled, a discrete Fourier transform (DFT)
can be defined, in a manner analogous to (2.9):

aX(f'L . (2.10)

with N At = T.

One speaks of discrete frequencies such as those defined
according to the relation:

Ikt kf (2.11)

with k = 0, 1, 2, ... , N - 1.

On the basis of (2.11), (2.10) becomes:

T . ) r - I j kn
X k' T .. X . (2.12)

n-o

where the first term, generally complex, has been divided by At
for normalization.

From relations (2.11) and (2.3) it is found that the Nyquist /10
frequency corresponds to k = N/2; only the Fourier coefficients
xk with k < N/2 are independent, while for k > N/2, they are
repeated identically.

The Fourier coefficients can be used to calculate N/2 lines
of the power spectrum at distance 1/T, by the relation:

I. 22t
G - -ix i (2.13)

where IXk 2 is the square of the modulus of Xk.
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2.4. Truncation Effect

A physical phenomenon, described by a function of time .x(t)
can be known only in a finite time interval; based on this con-
sideration, the transform xCf,T) is defined by relation (2.9).
It is important to examine the consequences of truncation of x(t)
in the calculation of the power spectra.

A function xCt) defined in the limited interval (-T/2, T/2)
can be considered the product of a function y(t), defined in the
interval C--, -), such that xCt) = y(t) in the interval (-T/2, T/2),
and of the function uCt) such that:

uCt) = 1 for -T/A t4-T/2
(2.14)

0 for ltjiT 2

The function u(t) is called the rectangular window. /11

The Fourier transform of the function x(t) can then be defined
in the following manner:

2

On the basis of a known harmonic analysis theorem which
establishes the fact that the transform of a product of two
functions is given by the convolution integral of the two trans-
forms, the following is obtained:

(2.16)

where YCf) and UCf) are the transforms of the two functions y(t)
and uCt), and the second term of C2.16) is the convolution integral
of Y(f) and UCfl.

Let us suppose that the function xCt) is a truncated sinus-
oid, of frequency fo; the transforms of yCt) and uCt) are,
respectively:
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.. (2.17)

Byapplying C2.16), the following is obtained: /12

x(f,t) = U(f_-t: )  (2.18)

which is represented by the solid curve in Fig. 4, translated
by a quantity fo on the axis of the abscissas.

It can be stated that the truncation effect is thus a resolu-
tion loss in calculation of the spectrum: in the previous example,
the truncated sinusoid is not represented by a pulse function,
but by a function of the type sin x/x.

In the case of calculating a spectrum beginning with a time
series of N numbers, it is possible to obtain, as has been seen,
N/2 estimates of the spectrum; the frequency resolution is
thus given by:

(2.19)

An effect that is linked to the choice of the window's
rectangular shape u(t) is the presence of leading and trailing
edges with amplitude equal to about 20% of that of the top.
Consequently, the spectrum is distorted, and this can make the
intepretation of the data difficult. There exist windows in
which the leading and trailing edges are damped.

One of the most common is that termed the "Hanning," defined
by the expression:

( t) * (1'tcs 6'~ for It /13

. (2.20)

0 for It
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The flow of this function in the frequency .domain is given by
the dashed curve in Fig. 4; the Hanning window offers a
wider t o p than the rectangular window, and thus less resolu-
tion and better damping of the leading:jand trailing edges; the
resultant spectrum is therefore less distorted.

2.5. Variance in the Spectral Estimates

A variance is associated with each coefficient of the power
spectrum calculated by C2.13); this variance will be calculated
in this paragraph in order to establish the reliability of the
results obtained with the calculation process discussed up to
this point.

From (2.12) and (2.13), it is found that the k-th coefficient
of the power spectrum of a function x(t), defined in the interval
(0,T), is given by:

0 t() a xtf) (2.21)

where:

r (2.22)
X(f,T) a x(t) -2f dt 

(2.22)

The spectral coefficients are calculated for .discrete'values /14
of frequency f, at distance Af = 1/T.

The Fourier transform X(f,T) is a linear operation in the
complex field, for which, if function x(t) has a normal distribution,
the real and imaginary components of X(f,T), which are XR(f,T) and
XI(f,T), respectively, also have an independent normal distribution.
It results that the quantity:

iX(f9T) 2 X (f,T)*X (f,T) (2.23)

2 ,,

has a known distribution with the name "X distribution," where n
is the number of degrees of freedom corresponding to the number
of independent variables in the second term of (2.23). The
average and the variance of a distribution X2 are, respectively:

n X

(2.24)



It is then found that the relative standard error of each
estimate of the power spectrum is given by:

• _ I, 2J ,(2.25)

Substituting n 2 in C2.25), sr = . is obtained; this means /15
that the standard deviation of an estimate is equal to the expected

value; of the estimate itself, which is unacceptable in the greater
part of the applications.

In addition, it results from (2.25) that the standard devia-
tion is independent of the length of the record; this means that
an increase in the number of samples increases the spectral resolu-
tion, i.e. the number of estimates for the same signal band; but
it does not reduce the standard error.

In order o %educe the error in calculating the spectrum, two
equivalent paths may be followed: complex spectrum averaging can be
carried out, or averaging of contiguous spectral estimates can be
done.

In the first case, it is a matter of averaging a certain
number K of spectral estimates, each obtained from signals observed
for time Tk; the total length of observation time (record length)
is thus: T = KTk, and the final spectral resolution is: Af = 1/Tk.

It is also possible to proceed by first processing the signal
acquired during time interval T, obtaining a resolution Af' = 1/T;
averaging of K contiguous estimates of the spectrum is then carried
out, and resolution Af = KAf' = 1/Tk is thus obtained.

In both cases the value of n to be substituted in (2.25) is
n = 2k = 2T*Af, for which the relative standard error becomes:

1/16

3= (2.26)

From the practical point of view, the first process, which
involves the execution of complex averaging, is preferable to the
second, since it allows the calculations to be carried out on a
constant number of samples, whatever the value of K, and thus to
occupy a fixed, limited part of the computer memory in the data
acquisition phase.
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3. Description 'f the 'System for Calculating the Amplitude /17
Spectrum

In this chapter the realization of the system for processing
signals in real time will be discussed in detail.

After the description of the algorithm of the fast Fourier
transform (FFT), the block diagram of the system (hardware) will
be discussed, and then the programs (software) will be analyzed.

3.1. Fast Fourier Transform CFFT) [8, 9, 10]

This term indicates an algorithm for calculating the discrete
Fourier transform C2.12), which is carried out by a computer in aperiod of time that is considerably reduced compared to traditional
algorithms. The introduction of the FFT in 1965 by Cooley and
Tukey permitted the construction of systems for data acquisition
and analysis in real time with digital processing of small
dimensions.

The Fourier transform defined by (2.12) can be written:

N-I kn

X = E xk n
n=o

(3.1)

k 0,.

where: /18

Two methods exist for the fast calculation of the N Fourier
coefficients expressed in (3.1), called time decimation or frequency
decimation, respectively. They are equivalent from the standpoint
of calculation time; here only the second will be described, sincethat is the method used in the present work.

To simplify the calculations, N generally is considered as an:integral power of 2, which does not limit the use of the algorithm.

Let the sequence of N numbers xn be divided into two equalparts, each of N/2 points, formed from the first half and thesecond half of the original series, respectively; the followingis obtained:

Yn = Xn
Zn = Xn+N/2, (3.2)

n = , i , .(N/2-1)

11



(3.1) can then be written in the form:

3#/2-1 I /19

tk n

that is:

Nl f- ex (33)
LI O

It is convenient to consider the coefficients with even index
(k = 2h) and those with odd index (k = 2h + 1) separately.

In the first case, Eq. (3.3) yields:

,/ N/.--1

h 2h n ,
nzo

(3.4)
N/2-1

with 0 < h < N/2.

This is the expression of the Fourier coefficients in the
series (Yn + zn) of N/2 points.

For an odd k (k = 2h + 1), (3.3) becomes:

X/2-1

g*b2b+12 [ye n in2n*1) expj2w la2 i)#W
n=o

1/2-1
. !-.2n/3) .exp(-j2wha)I(g; U) (3.5)

n i

with 0 < h < N/2., /20

12



This relation yields the Fourier coefficients of the series
of N/2 points:

(Yn - z n)Wn

It can be concluded that the N Fourier coefficients of the
primary sequence xn can be calculated by means of the transforms
of two series of N/2. numbers, each of which is a linear combination
of two numbers of the original series.

Figure 5 illustrates the graph of the operations for N = 8.

For N = 2 , this process can be repeated k times, until the
number of points on which the first transform is operated is
reduced to 2.

The signal flow chart is reported in Fig. 6 for N = 8.

The reduction in calculation time obtained by following this
plan is determined approximately by taking into account only the
multiplications, and neglecting the additions and control operations.
Calculation of a coefficient Xr with (3.1) involves the execution
of N multiplications in the complex field; for the integral transform,
the number of multiplications is N2 . In the graph in Fig. 6, the
number of multiplications for every step in the complex field is N,
the number of steps is log 2 N, and thus the total number of multi- /21
plications is Nlog 2 N.

The reduction in calculation time is about 98% for N = 512,
and 99% for N = 1024.

In the graph in Fig. 6, the Fourier coefficients obtained at
the end of the process can be ordered; the order of the indices
is reversed (bit-reversed), that is to say, in the i-th position
a coefficient with index k is found, which is obtained from the binary
number "i" read in the opposite direction.This property makes the reordering
of coefficients easy. An advantage of this plan is that at every
step the results of processing two points can be stored in the
same memory locations that contain the original points no longer
used in the processing; in this manner, a single data vector can
contain both the intermediate steps and the final results of the
calculation.

Different data flow charts and a more complete discussion of
the FFT algorithm are reported in the works cited.
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3.2. Block Diagram of the 'Syst'em

The system for data acquisition and processing in real time is
represented in Fig. 7. The HP 2116 B computer, equipped with a
memory of 16,000 words of 16 bits, receives data in numerical form
from the analog-to-digital converter and analyzes them, showing the /22
results on the teletype, o n the graphic panel, or the video
terminal.

The signal, produced by a function generator, is added to
the gaussian noise coming from a noise generator. The addition
signal is next filtered to eliminate frequency components larger
than the Nyquist frequency, and is then converted to numerical
form by the analog-to-digital converter.

The conversion command, supplied by a:pulse generator, allows
the computer to acquire 100 samples per second, each of 8 bits plus
one bit for the sign.

After acquiring a temporal sequence of N samples, the computer
carries, out processing and shows the results in numerical form on
the teletype, or in graphic form on the video terminal or the
graphic panel.

The procedure adopted does not correspond to that commonly
called "in real time," in which the acquisition of new data takes
place contemporaneously with processing of the numerical sequence
acquired before; in the system in Fig. 7, the two phases -- data
acquisition and processing -- are consecutive. This procedure
is simpler from the standpoint of programming, and it does not
restrict the results obtained if the hypothesis is made that the
input signals are stationary, that is, the statistical parameters
which characterize the signals themselves do not undergo variations
in time.

On the other hand, if a fast converter is not available, the /23
acquisition time is greater .than the processing time; thus it does
not appear to be necessary to modify the system, because it would
operate in real time.

3.3. Structure of the Progam

The main system contrl,program, written in BASIC language, for
all the data acquisition and processing operations calls some sub-
routines in ASSEMBLER language which operate on whole numbers,
in order to decrease the calculation times.

14



The flow chart of the main program is shown in Fig. 8.

During the initializing phase, the number N of samples to
be processed is supplied to the program, and then, once the
sampling period is fixed, the time T of observation of the signal
(record length); in addition, the values of the function

are computed and stored, with which it is possible to construct
function Wkn, defined by (3.1), for any value of k and n.

Another initial parameter of the program is the number of
spectra that must be averaged to improve the statistical reliability
of the results, as was, seen in Par. 2.5.

It is found from (2.26) that the variance in result is, in /24
fact, inversely proportional to the root of the number of averages;
and in particular, an increase in the number of processes carried
out should correspond to a decrease in the signal/noise ratio.

After initializing, the system can acquire the first sequence
of N samples.

The Fourier transform of each sequence is first computed
with the FFT subroutine, and the amplitude spectrum, with the POWER
subroutine; the AVERAGE subroutine carries out averaging of this
spectrum with the others computed before.

Data output can appear on the teletype, the video terminal,
or the graphic panel; if the analysis is not finished, the program
returns to the data acquisition phase.

3.4. The FFT Subroutine

The FFT subroutine computes the Fourier transform of a
temporal series of data using the algorithm described in Par. 3.1,
following the graph in Fig. 6.

It is deduced from this figure that the fundamental iterative
operation for calculating the FFT is substitution for a pair of
complex values Xm and Xn a new pair, defined as:

Xm+l = Xm + Xn  (3.6)

15



Xn+ = (Xm = Xn)Wk (3.6) /25

where Wk is the k-th value of the N-th root of unity (3.1).

Let us consider how the moduli of the numbers vary after
operation (3.6); a first indication is given by the expression:

Ix I I x + I (37)

which indicates that the mean square value of the moduli increases
by a factor of V2 after each operation. On the other hand, from
(3.6) it is found that for max = IXnm x the maximum values ofmax n max
the moduli of the numbers in the first term of (3.7) are:

"xi max =rX rnmax imax (3.8)

The preceding considerations are very important. In fact,
all data processing is carried out with whole numbers which have
a dynamic of 15 bits plus the sign; it is thus necessary to check
that the results of all the arithmetic operations will not surpass
the capacity of the computer's registers, i.e., in other words,
that an "overflow" situation is not set up which would completely
falsify the processing results.

This check can be made in the following manner: /26

-- dividing the result of each iterative operation by 2 (3.6);
in this way, as can be seen from (3.8), an overflow can
no longer take place.

-- checking that in the course of processing IXmI < 1/2 C is
.always the case, where C is the maximum capacity of the
arithmetic register (in our case, C = 215); if this
takes place, the calculation of Xm+1 does not produce
overflow; on the contrary, all the terms intervening in
the calculation of Xm+l are divided by 2 before initiating
the arithmetic operations.

-- proceeding as in the previous paragraph, but with IXmI < C;if an overflow takes place during calculation of Xm+l, the
results of the processing already done and to be done in
the course of the iteration must be divided by 2.

16



The first method is the most simple but the least accurate; the
second was adopted in the FFT program, since it allows a rather
simple check of the overflow, with loss of only 1 bit of information
in the final result. The third permits utilization of the entire
capacity of the registers, but it is the most complex to program.

If it is borne in mind that the data are acquired with an
accuracy of 8 bits plus the sign, that the number of iterations
is nine, corresponding to N = 512, and that the arithmetic
registers of the computer have 15 bits plus the sign, an overflow
can be checked in the last two iterations; the checks carried out
for the program proved to be suited to yield the correct results /27
by appropriate scaling of the results.

The error introduced by this overflow checking operation was
calculated, and it is seen that other causes of error, such as
those discussed in Par. 2.5, weigh largely on the final result [11].

3.5. Amplitude Spectrum

With the FFT subroutine, the Fourier coefficients Xi of a
temporal series of N numbers are obtained. Representation of
the real and imaginary components of these coefficients supplies
all the information obtainable with the harmonic analysis of a
signal. At any rate, representations are usually used that make
the interpretation of the data simpler, such as the power
spectrum and the phase spectrum, the Nyquist and Bode graphs, etc.

In our case, we chose the representation of the amplitude
spectrum, which permits immediate visualization of the frequency
composition of the signal, even if it does not contain phase
information.

The single power spectrum coefficient is defined by (2.21) and
(2.23):

i T i i(3.9)

The POWER subroutine computes the coefficients of the amplitude
spectrum, defined as:

xi xI + xi (3.10)

in such a way that the components of the small signal can be better
visualized with respect to the maximum; a very simple relationship,
exists between the two spectra, which can be found from (3.9) and
(3.10).
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The root extraction operation on the second term of (3.10) is
carried out by the POWER program in an approximate manner, so as
to reduce the calculation time [12].

The approximate root of a number N can be calculated by
making use of the approximate binary logarithm of N, in which
linear interpolation between two consecutive values of the
characteristic is substituted for the true mantissa,(Fig. 10).

Given a number N, written in the form:

N = 2k(1 + x) (3.11)

with 0 < x < 1, the approximate binary logarithm is defined by
the expression:

log -102  = k)x (3.12)

The approximate root of N is found by dividing the approxi-
mate logarithm by 2:

J .1o /29
[ 092- (3.13

and inversely applying the approximation used to find (3.12):

* k/2 (3.14)

Calculation of (3.14) requires few simple logical operations
on the computer, as compared to calculation of the root of N with
the traditional algorithms.

The relative error introduced by (3.14) is given by:

. -- - 2 (3.15)IF , - (i +XI

This error is cancelled for x = 0,. and it is always negative
in the other cases; in addition, it increases in modulus for x
tending toward 1. The maximum is obtained by substituting x = 1
in C3.15), and is equal to about 6%.
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In practice, for x distributed uniformly in the interval 0 to 1,
an indication of the mean error is obtained by substituting x = 0.5
in C3.15); a relative average error of about 2% is obtained.

3.6. Averaging

The AVERAGE subroutine carries out the averaging operation on
all the amplitude spectra, calculated according to (3.10). The /30
averaging operation discussed in Par. 2.4 is carried out according
to the relation:

jX j * (J-1)*( x  ii J-1 x
xl (3.16)

where the indices J and (J - 1) represent the number of averagings
carried out on the i-th component, that is, the number of acquisition
and calculation cycles completed by the main program (Fig. 8).

3.7. Memory Capacity

The computer memory, which has a capacity of 16,000 words of
16 bits, is subdivided in the following manner:

Basic compiler 5000 words
Input/output system 2500 words
FFT subroutines 800 words
Data matrix 1500 words
Video matrix 500 words
Free memory 5700 words

The length of the data matrix depends on the number of samples
that are processed in every acquisition and calculation cycle; it
is equal to 3N, and in the table above, therefore, it is calculated
for N = 500. The dimensions of the data and video matrices are
specified in the main program, and they can thus be changed with
great ease; the FFT programs operate with any value of N whatsoever,
provided that it is an integral power of 2. /31

The control program is different according to the processing
that one wishes to carry out on the data, and thus its length can
also vary within the limits of the free memory.zone.
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4. Experimental Results: /32

In this paragraph, the results of the tests carried out on
the system in Fig. 7 are discussed; this simulates a signal source
at different levels of the signal/noise ratio. The results are
shown in the form of output on the graphic panel and printed on
the teletype. The video terminal was used chiefly in the phase
of setting up some programs, such as fast data output.

The signals used for the tests are the square wave and
the rectangular pulse. The theoretically calculated amplitude
spectra of these two signals are shown in Fig. 11. The spectrum
of the square wave is made up of lines corresponding to the odd
harmonics of the fundamental, with the amplitude in relation to
the fundamental given by:

A /Ao = 1/n (4.1)

The amplitude spectrum of the rectangular pulse, of duration
T/8, contains all the harmonics, with amplitude variable in
accordance with Fig. llb.

Figure 12 shows the amplitude spectra of a square wave with
a fundamental frequency of 5 Hz, sampled with a period of 10 msec,
and filtered at the Nyquist frequency (50 Hz).

The number of samples processed is 512, and the record length /33
is 5 sec; resolution turns out to be about 0.2 Hz.

The ordinate scale is calculated in the following manner.
One inch corresponds to an amplitude of 7000; since the analog-to-
digital converter has an accuracy of 8 bits plus the sign, and a
base scale of ±l V, there corresponds to each inch a value of
the spectral component (in V//Hz) equal to:

2 2t oo 2.32. 2.1 - 2  
4.2)

25 512.

This value can be multiplied by 2 or 4 if there was an
overflow in the FFT calculation, with consequent reduction in scale.

Figures 12a and 12b show the filtered square wave and the
spectrum without noise. The presence of the 11th and 13th
harmonics C55 and 65 HZ) is noted; they are spread out because
of aliasing; in fact, the low-pass filter whose cut-off frequency
is equal to the Nyquist: frequency does not completely eliminate
the harmonics nearest the cut-off frequency.
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In Fig. 12c, the same square wave is emb.edded in the noise,
with a signal/noise amplitude ratio equal to 0.6. In the single
spectrum CFig. 12d), onlyythe' first and third harmonic are
recognizable; after ten averagings, which reduce the variance by
a factor of 3, the fifth harmonic is also visible, with a signal/ /34
/noise ratio equal to about 0.1.

The same series of measurements was repeated, putting the
low-pass filter at the cut-off frequency of 25 Hz, so as to
eliminate the aliasing effect. As a consequence, the noise spectrum
is also modified Cin Figs. 13d and 13e). With a signal/noise
amplitude ratio equal to 0.9, the fifth harmonic begins to be
identifiable at the tenth averaging.

Figure 14 shows the results of the Hanning window operation
test. The signal is a square wave filtered at 25 Hz, like that
in Fig. 13a. The scale of the ordinate is 0.12 V//Hz per inch
in this test.

The amplitude spectrum of the signal obtained without using
the window is shown in Fig. 14 a, and that obtained with the window,
in Fig. 14b. The results foreseen theoretically (Par. 2.4), i.e.,
a decrease in resolution and a contemporaneous, clearer defintion
of the spectral lines, were verified experimentally, although;;the
differences do not seem to be remarkable.

Figures 14c and 14e show the spectra of the same signal
embedded in noise, with S/N = 0.65, after the first and the 30th
averaging, without the use of the window.

The same processing was repeated using the window, and the
results are shown in Figs. 14d and 14f.

The results do not permit a conclusion to be drawn as to
whether or not the window is useful. /35

In Figs. 15, 16 and 17, the same tests are repeated, substi-
tuting for the square wave a rectangular pulse with fundamental
frequency 5 Hz and duration equal to about 1 octave of period
(T/8): the test results do not differ substantially from those
obtained previously.

The system's processing time, defined as the sum of the dataacquisition time and the time of calculation of one spectrum,
including the time for calculation of the spectral averaging, is
shown in Table 1. The data output times have been excluded, forall of the terminals provided for...
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TABLE 1.

Number of Samples Acquisition Time Calculation Time

512 5.1 sec 2.4 sec
256 2.5 sec 1.1 sec

The acquisition time depends on the samplingperiod, in our
case fixed at 10 msec; with the use of a fast analog-to-digital
converter, this time can be reduced to a negligible fraction of
the calculation time.

The calculation time indicates the limit of the system as
regards the frequency response. In fact, for a system in real
time, in which acquisition and processing occur contemporaneously, /36
if N is the number of samples and T the calculation time, the
maximum sampling frequency is given by:

fC = N/T

and the signal band is half of fC. In our case, with N = 512, the
sampling frequency is about 200 Hz, and the signal band can thus
be 100 Hz.

To increase the speed of calculation, and therefore the signal
band, the commercial Fourier analyzers are equipped with fast
arithmetic units connected to a standard computer and designed
with' the specific purpose of carrying out the FFT; in this way,
calculation times on the order of a few msec are obtained, as are
signal bands of a few tens of kHz [131.

5. Conclusion /37

The main purpose of this work was to study the feasibility
of a system of data acquisition and processing in real time, using
a small computer. It is known that for some time very elaborate
systems have been available on the market, as regards both the
hardware and the software for digital analysis of data in real time;
but because their cost is high, such systems are justifiable only
in particular cases in which their use would be extended in time
and where other, more economical systems Csuch as, e.g., analog)
cannot be substituted.

The results obtained with the present work show that if a
suitable computer and the standard laboratory instrumentation.
are available, it is possible to construct a system that carries
out some particular operations with performance comparable to that
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Of ,the digital Fourier analyzers. The path followed to attain
this objective was the preparation of a library of programs of
data acquisition and analysis that can be called by a main program
which can change, according to necessityj and which serves as an
operative system to control the whole apparatus.

Some possible developments of the present system are easy to
point out.

As far as the hardware is concerned, it is clear that per-
ceptible advantages could derive from the use of a fast analog-to-
digital converter: there are instruments on the market suited to /38
this use with relatively low costs, and with high frequency of
conversion (e.g., 50 kHz and greater). An instrument of this
type could reduce the data acquisition time to negligible values,
and thus raise the signal bands analyzable in real time; in the
case of stationary signals, the analysis could be extended to
the maximum frequencies compatible with the speed of the converter, by
separating the two phases of acquisition and processing of the
signals.

Improvements in the software are possible, for example,
extending the library of programs that can be called by the main
program. For example, it can be useful to calculate the auto-
correlation function of a signal,making use of the autocorrelation
definition itself, and then to calculate the power spectrum by
applying the Wiener-Khinchin theorem.

It is possible to consider processing two signals together,
by means of the cross correlation functions or the crossed spectral
density.

In every case, further developments in the analysis programs
are linked to the type of application foreseen; thus it does not
appear convenient to consider a system of general use based
exclusively on a program library without contemporaneous development
of special hardware components to be connected to the computer,
in order that the system will be fast and easy to use.

The fact was stressed above that the two phases of data
acquisition and processing are successive; a modification is /39possible to make them contemporaneous, in the sense that the cal-
culation is carried out on a group of data acquired previously,
while continuing the acquisition of new data, by means of the
machine's "interrupt" system. It is possible to modify the
programs in this manner relatively easily; it should be noted
that in the case of nonstationary signals, it is indispensable to
analyze the data in real time, since it is incorrect to neglect
components of the data sequence,
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A further possibility that can be put intocpractice with
little effort is to make the system adaptable to the spectral
analysis of data acquired previously (e.g., data coming from
satellites), and recorded on magnetic tape. It would thus be
possible to analyze a large amount of data in a short time,
without making use of rough systems of calculation.

In conclusion, it can be observed that a large number of
problems can be confronted and resolved by a relatively economical
digital system. The eve greater diffusion of small processers
makes it ever more pressing to study systems with the purpose of
carrying out signal analysis in real time, even if analog systems
remain indispensable, especially in the analysis of high-frequency
signals; they are often convenient due to their simplicity and
their low cost. The analysis of each individual problem must
suggest, on the basis of technical and economic considerations,
the most suitable method of resolving it, and the instrumentation /40
best adapted for reaching the proposed objective.
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Appendices /44

Appendix A specifies the calls from BASIC to the programs
that make up the Fourier analyzer library.

Appendix B shows the list for the main program of system
control (MAIN), in BASIC language, and the list in ASSEMBLER of
the FFT calculation subroutine. The flow charts of these two
programs are in Figs. 8 and 9, respectively.

Appendix A: Proraid 'Library /45

1. FFT - Fast Fourier transform

CALL (50, N, L, K, B, DC1,1), E(1,1), W(1), S)

N - number of samples
L - log2N
K = 0 - direct transform; K = 1 - inverse transform
B = 12 - length in bits of the words of vector W
D(1,1) - data matrix; at the beginning, contains the data

acquired from the outside; at the end, the real
component of the Fourier coefficients.

E(1,1) - data matrix; at the beginning, cleared; at the
end, contains the imaginary component of the
Fourier coefficients.
The dimensions of D and E, specified in the
main program are:
DIM D(a,b), E(a,b)
with a*b = N/2.

W(1) - vector containing the values of the function
cos(2rn/N) 10 < n < N/41, multiplied by 2 B
(B = 12) and transformed in integrals.
DIM W(a) with a = N/8.

S - Scale factor; must be cleared at input.

2. AVERAGE - Complex 4pectrum averaging

CALL (51, N, CC1,1), A(1,1), RC1,1), J, Sl)

N - number of samples
CC1,1) - matrix of the spectral averages

DIM CCa,b) with a*b = N/4
AC1,1) - matrix of single spectrum

DIM ACa,bI with a*b = N/2
RC1,1) - matrix of inverse indices

DIM RCa,b) with a*b = N/2
J - number of calculation cycles
S1 - scale factor.
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3. ZERO - Matrix zero setting

CALL C52, N, ACI,1.))

N - matrix .length
A(1,1) - matrix to be cleared

DIM ACa,b) with a*b = N/2.

4. WINDOW - Hanning window

CALL (53, N, DCl,l), WC1))

The parameters have the same significance as in the FFT call.

5. REVERSE - Calculation of inverse indices

CALL (54, N, R(1,1)

6. SAMPLE - Data acquisition

CALL (55, N, D(1,1)..

The parameters have the same significance as in the FFT call.

7. POWER - Calculation of power spectrum

CALL (56, N, D(1,1), E(1,1), A(1,1))

The parameters have the same significance as in the FFT and
AVERAGE calls.
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IS DIN V[128.23
88 DIN AC64a4J.CE64,5 2
30 DIM D6443.E(64.42
40 DIM W[64].RC6443]
56 DIN PC3.OC4H#[4]HLC4t4
60 CALL (II1VCI,3m.51£)
70 CALL (14,Ml)
75 CALL (41#,)
80 CALL (4SBXeY)
85 CALL (43*X.YP-3)
90 LET M6.1
91 LET M73l6
92 LET M8-30
W REN

Iti REM YINITALIZATION
135 PRINT "No OF SAMPLES AND LOG N";
160 INPUT N*LI
180 LET F=58
190 PRINT "AVERAGE NOS"
200 INPUT n
210 LET Bae
220 REM CALC COSINES AND INVERSE INDICES
230 BOSUB 5080
246 CALL (54NRC[I.l3)

50 RE4 ZERO SETTING
t6 LET N2iN/2
878 LET Ste
288 CALL (SsN2*AtCII3)
311 CALL tSC2N2CttC3)
31 REMFFT-83 PS-I
320 LET NII
338 REMHANN-1
340 LET WItl
400 REM
416 REM ACQUISITION
48 FOR JIt TO N
430 CALL (592N#DC1tl3)
435 CALL (52 ,NA[II3)
440 CALL C52*,N.[ECL13)
450 CALL (55.NDEtIe3)
451 CALL (1. IlX2)
454 IF X2 Pa I THEN 4"
455 IF J THEN 468
4S6 LET Znl
457 Lin ZRe6
458 0osUB 8s
46 IF Wie THEN 5e
470 CALL CS3*NmDCI3.W[$])
5$ REM
S3O REM CALCULATION
S16 LET SeO
536 LET I(o
546 CALL (SeNLIeKIBDtCoIaBIggIagleUgIli)
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/49

550 LET S3SlI-S2
560 LET N32'0N
ST7 CALL (b6,N3D[ (ll IE I * aA I I l)

SO CALL (51.NC(il]AllCI l]hR[IlIJs3)

666 IF S3 p" r THEN 700
610 LET Sl=S2
700 REN
710 RMEPRINT OUC
72t CALL (Il *SX)
736 IF X 3e 8 THEN 800
740 GOSUB 6868
86 RE"
81 REM VIDEO OUT
8WO CALL CI*14*Xl)
830 IF Xl := B THEN 98e
d 6 GOSUB 7088

966 REM
916 REM PLOTTEF
926 CALL (1<t1*vX3)
930 IF X3 3- 0 THEN 1828
932 IF J=M6 THEN 948
934 IF JsM7 THEN 946
936 IF JnM8 THEN 948
936 GOTO 1028
940 REM PLOT OUT
16M6 LET Zo-I
t1le 0SUB 88
168 NEXT J
1138 CALL (lteX4)
1148 IF X4 s8 S THEN 480
1156 GOTO 158
4666 IEM SAMPLING
4010 lET BltutC16-LI)
4060 LET Alu
4.36 LET FrI 3.*14159*F9/l 8
048 !JET N41N/44

4843 ;.ET ISG
4945 U.ET 19=1
4650 'OR Ia. TO N STEP 4
4668 JET F3FI(*CI-)
4865 'OR J9-l TO 4
4076 JET PCJ93wAl*SINCF3)*5B
4075 JET F3uF3*F1
.46 IEXT J9
4065 it 16=1 THEN 4094
4087 ;:ALL C(38PCtI.Dt19sll 4)

496 :T 181
466R IOTO 4116
494 CALL (3,P1! ]3DL19,* J*4)
4696 LET Iae
43~6 LET 19419*1
4110 NEXT 1
4138 £ATttN
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/50

3506 REM COSINES

S616 LET N4=N/4
SM9e LET T2*3.141599/N
5830 FOR Inl TO N4 STEP e
5840 LET TIrT*(I-1)
SOS8 LET T2"TI*T
5666 LET P[I lCOS(TI)*ewB
5070 LET P[2 "COSCT2)2L

t B

58M LET 13(Il-1)/2
5890 CALL C36.Pl*tW913)32)
5136 NEXT I
SIlO RETURN
60"6 REM
6016 REN PRINT OUT
6688 PRINT "SCALE"; 51
6038 LET N8mN/8
6648 FOR I3 TO N8
6U66 CALL (31*CEIt).LI)t4)
6090 FOR Itt1 TO 4
61"0 PRINT LtIIt)
6110 NEXT It
6112 PRINT
6115 CALL (oi15X)
6116 IF X m8 THEN 6138
6120 NEXT I
6130 RETURN
760 REM VIDEO
7019 LET NNl/8
720 IF NIa* THEN 7688
7030 GOTO 7688
7600 REM POWER SP*
7613 LET X6c0
7630 LET N6=512/N
7640 FOR 1=1 TO N8
7645 CALL (31,C(Clol3&PCI)4)
7650 FOR K6l TO 4
7655 LET X6.X6*N6
7668 LET y6mP(K6]/tB+l1
7670 CALL <t(1X6,Y6)
766088 NEXT K6
7686 NEXT I
7760 CALL C114*XI)
7790 IF rl we 0 THEN 7810
7795 0010 7788
7860 CALL (34*M2)
7618 CALL (15#M4N2)
782 RETURN
806 REM PLOT
806 LET XYSO
8620 FOR I3l TO 3

8036 LET Ywy-.5
8046 CALL (43**Yog2)
0890 CALL (43*I.Y,2)
864 CALL (436moY,2)
8070 NEXT I
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/51

8889 CALL (43,*9*8-2-)
8096 IF Z'-I THEN 8lle
831n CALL (43.8*1.*3)
8il LET X"YwV
SIR* FOR le1 TO 5
8130 LET X*S
8148 CALL (43.Xag.2)
8150 CALL (43.X*I.2)
8160 CALL (43.X.S.2)
8170 NEXT 1
8186 CALL (43*0*8,3)
8190 LET NIeN./8
6296 LET XuY"O
88t3 LET DSw(SI1/N)*I.eo 80-2
8212 IF Z-I THEN 8922
89214 LET D59.S5*DS

E21 FOR Int TO N8
8230 IF Z8-1 THEN 8990
8850 LET CS350
826 LET C6=8
6279 CALL (31.DtIlI).P[CI8)
8280 GOTO 8398
829 LET CS"578O
8310 LET C6-4
8313 CALL (31CCI23PCIPt3l4)
8320 GOTO 8390
8390 FOR 1.3s TO C6
8400 LET Y-P(II)/CS
6410 CALL (43.X*Yo2)

264 LET X-X*DS
8485 IF X92.5 THEN 8500
8430 NEXT 11
8440 NEXT I
aSe IF Z'-l THEN 8518
8518 LET Xm3
8520 LET Ym.75
8530 LET R958600
8540 LET RNN
8550 GOTO 8600
8568 LET X3
8571 LET Y1.*75
6858 LET R9u8816
8591 LET R8SJ
861 CALL (45, Y* *3125&SR9)

8610 LET YNy-e2S
862 LET R9R9+1
8630 CALL (45*.X.Y.ol.*R9)
8648 LET X'X*o4
8650 CALL (44,X&Yol.IRS)
8668 LET Xn2-2
8670 LET Y-15
868 IF Zw-I THEN 8710
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/52

8690 LET Reat
8695 LET XI.S5
87T GOTO 8i7

710 LET ReS
6WNS CALL (44X*Y...Rlit*S)
S73 LET Xn*X.3
6748 LET R9tR91
6750 CALL (45 XY*..S.IIR9)
600 REM DATA RECORD
811611 RE N
so" RM SEC

8810 RIEPOWER SPECTRUI
8611 RENAV

818s RS4NZ
6990 IF 2a-I THEN 89M
8910 CALL (43**-1*-3)
89M6 IF Nlt THEN 6972
1985 IF 22.3 THEN 8968
8938 CALL (43*8I.-.5-3)
894D LET ZR-.8*"
8950 GOTO 6986
896 CALL (437*9*5*.-3)
6970 LET ZOI@
8978 If No THEN 8980
8973 IF 22s THEN 8977
8974 CALL (43*7*4*5*-3)
8975 LET 220
8976 GOTO 8980
8977 CALL C43*.0*5o-3)
8978 LET Z2RtZ*I
8916 RETIRN
9999 ENDm

31



/53

K O

to WO EAL SW'SF
I A OW PeAS SUFFER
Iw Or SUFFEr

jIBA CMh.

CkA
STA INO CLEAR OW gNSEX

hTA SCA AmS SCALEL FACTOR

CLAV*I NA
hTA to ~m
DLD Ml
Jsm IFIX
MOP

3"S M

DLD LIl
JSS IFIK

SIB L FOR Lot TOUl

L~OOP1 DLD 1901
jIB IFIX

CLA
STA SIT," CLEAR DITIN

LDA ,gsDOV OFlw m

imp ONI YES
CIA
STA IModOV
IZ Sli" DITINI

13Z SCA SCA SCGA*I

O1(l WA 00H~Cl
STA "I
ALS
STA HleIW

AS

STA "I MUI3~hL
LOAS'
AS
hTA "a wows3

CHAMA
STA NI MOONS

IDA "I

32



/54
C INA
STA n FOR nMt TO nI

LOOP* LDA n3

STA N3 n3wM3+NR
LDA "I
CNA.INA
STA 13 13-"NI
CLA
STA I ISO
LDA NI
CHA* INA
STA ICONT FOR Iot TO NI

LOOP3 LDA n3
ADA I
STA II IlN3*1

ISz I
LDA 13
ADA NI
STA 13 13-13MNI
LUS II
ADM IRAD
LDA II
ADD NI
ADA I1
iSm CONFR
STA 1S 1IwtRE.AL(I ) REAL(I IWt)
LDI is
ADS IRAD
ADS t
LOA 1*1
C AINA

ADM IRAD
ADA Iol
Jsm Cowr
STA 10D IDwREUAL)U(I)RAL(RI*I)
LAS II
AM IMAD
LDA l.
ADD NI
ADA lt
JS CONFI
STA IS I3swIMtlR ItS*IMASCt1I*I)

AD IMAD
ADS NI

..LDA Iot
CitM

me IMAD
*AA 101
Jm COwR
STA IDO IDtaS(II )-IMn(I eI)
LA IS

33



jW Pie /55
LOA NM
AMARS

*VI NA

3ZAR33
J P30 30W4
ISA
im P46 134614
LAS 13 13*WB

liS WH

AD@ a
ITS 14 14~11-13

LOSA 1.l

STA Iwo 3vW,..I(14$

P48 LDD 13
£13 34 14*13
AM I WAD
LiSA 1#1
STA EW 31. 0(34)C1

P"g LMS 14

L.DA MWW
ARSDARS
A" 0

LiSA S.l
STA Iva ~ t(W'4
DLD Kal
JOB IFIX

-P

STA um
PU liSA li SO F

ST "I3I

Wy 1011

CMA.LI

rwe

W01 13

WA 153

i
M31I4

SA I"1
L" Sol~ lrYr4
Wy sr4

34~lll



/56

06T NIB
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imp P96
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and the Hanning window.
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Fig. 11: a) Amplitude spectrum of a square wave.
b) Amplitude spectrum of a rectangular pulse.
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a) Square wave filtered at 50 b) Amplitude spectrum of signal a;Hz; record length: 5 sec; 512 the 11th and 13th harmonics are
samples per record; Nyquist seen to be inverted around the

c) Square wave with noise d) Single spectrum of signal c after .en

----- , averagings; noise variance is
decreased by a factor of 3.

01 34

Fig. 12.
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Fig. 13.
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c) Single spectrum of signal a d) Single spectrum obtained by using
with S/N noise = 0.65; without the tanning window.

window.
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e) Spectrum obtained by averag 0f) Spectrum ob'tained by averaging

ing 30 spectra of type c; vari- 30 spectra of type d.
ance is diminished by about 5.

Fig. 14.
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a) Pulse filtered at 50 Hz; b) Amplitude spectrum of signal a.
record length: 5 sec; 512
samples per record, Nyquist
frequency: 50 Hz.

sac

c) Pulse with noise (400 my d) Single spectrum of signal c.
rms); S/N ratio = 0.4 (in
amplitude).

e) Spectrum of signal c after 30
/ . . . . averagings; the variance is

diminished by a factor of 5.

0,17

Fig. 15.
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a) Pulse filtered at 25 Hz; b) Amplitude spectrum of signal a.

record length: 5 sec; 512
samples per record, Nyquist

frequency: 50 Hz.
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c) Pulse with noise (250 my d) Single spectrum of signal c.
rms); S/N ratio = 1.

e) Spectrum of signal c averaged
f 8 ' . t30 times.
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Fig. 16.
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a):Amplitude spectrum of a pulse b) Spectrum of the same signal
signal embedded in noise; S/N = shaped with Hanning window.
= 0.6; filter at 25 Hz.
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0,12 . 0,12-o 12

c) Average of 30 spectra of d) Average of 30 spectra of
type a. type b.

Fig. 17.
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